|
Educational resources of the Internet - Mathematics. Образовательные ресурсы Интернета - Математика. |
||
22-е изд., перераб. - СПб.: 2001. — 432 с.
Настоящий сборник задач предлагается студентам, изучающим математический анализ в объеме программы для высших учебных заведений. «Сборник» содержит систематически подобранные задачи и упражнения к основным разделам курса математического анализа.
Первое издание сборника вышло в 1947 году и прекрасно себя зарекомендовало в учебном процессе. Однако за прошедшие годы ряд разделов математического анализа, изучавшихся ранее в вузах, были включены в программу средней школы, и редакторы двадцать второго издания сочли возможным исключить задачи, относящиеся к этим разделам. Нумерация задач для удобства использования осталась такой же, как и в семнадцатом издании (1977 г.).
Формат: pdf ( 2016, 492с.)
Размер: 6,3 Мб
Скачать: Rghost
Формат: pdf (2001, 22-е изд., 432с.)
Размер: 7,2 Мб
Скачать: drive.google
Формат: djvu / zip (1985, 20-е изд., 384с.)
Размер: 7,1 Мб
ОГЛАВЛЕНИЕ
Предисловие 6
Глава I. Функции 7
§ 1. Первоначальные сведения о функции 7
§ 2. Простейшие свойства функций 10
§ 3. Элементарные функции. Обратная функция 14
Глава II. Предел. Непрерывность 25
§ 1. Основные определения 25
§ 2. Бесконечные величины. Признаки существования предела 28
§ 3. Непрерывные функции 31
§ 4. Нахождение пределов. Сравнение бесконечно малых 34
Глава III. Производная и дифференциал. Дифференциальное исчисление 44
§ 1. Производная. Скорость изменения функции 44
§ 2. Дифференцирование функций 48
§ 3. Дифференциал. Дифференцируемость функции 66
§ 4. Производная как скорость изменения (дальнейшие примеры) 71
§ 5. Повторное дифференцирование 79
Глава IV. Исследование функций и их графиков 86
§ 1. Поведение функции 86
§ 2. Применение первой производной 87
§ 3. Применение второй производной 99
§ 4. Дополнительные вопросы. Решение уравнений 102
§ 5. Формула Тейлора и ее применение 111
§ 6. Кривизна 114
Глава V. Определенный интеграл 118
§ 1. Определенный интеграл и его простейшие свойства 118
§ 2. Основные свойства определенного интеграла 122
Глава VI. Неопределенный интеграл. Интегральное исчисление 129
§ 1. Простейшие приемы интегрирования 129
§ 3. Основные методы интегрирования 133
§ 3. Основные классы интегрируемых функций 137
Глава VII. Способы вычисления определенных интегралов. Несобственные
интегралы 145
§ 1. Способы точного вычисления интегралов 145
§ 2. Приближенные методы 153
§ 3. Несобственные интегралы 156
Глава VIII. Применения интеграла 161
§ 1. Некоторые задачи геометрии и статики 161
§ 2. Некоторые задачи физики 181
Глава IX. Ряды 192
§ 1. Числовые ряды 192
§ 2. Функциональные ряды 197
§ 3. Степенные ряды 201
§ 4. Некоторые применения рядов Тейлора 204
Глава X. Функции нескольких переменных. Дифференциальное исчисление 208
§ 1. Функции нескольких переменных 208
§ 2. Простейшие свойства функций 210
§ 3. Производные и дифференциалы функций нескольких переменных 215
§ 4. Дифференцирование функций 220
§ 5. Повторное дифференцирование 224
Глава XI. Применения дифференциального исчисления функций нескольких
переменных 229
§ 1. Формула Тейлора. Экстремумы функций нескольких переменных 229
§ 2. Плоские линии 236
§ 3. Векторная функция скалярного аргумента. Линии в пространстве. Поверхности
238
§ 4. Скалярное поле. Градиент. Производная по направлению 245
Глава ХII. Многомерные интегралы и кратное интегрирование 248
§ 1. Двойные и тройные интегралы 248
§ 2. Кратное интегрирование 249
§ 3. Интегралы в полярных, цилиндрических и сферических координатах 254
§ 4. Применение двойных и тройных интегралов 257
§ 5. Несобственные интегралы. Интегралы, зависящие от параметра 269
Глава XIII. Криволинейные интегралы и интегралы по поверхности 276
§ 1. Криволинейные интегралы по длине 276
§ 2. Криволинейные интегралы по координатам 280
§ 3. Интегралы по поверхности 287
Глава XIV. Дифференциальные уравнения 291
§ 1. Уравнения первого порядка 291
§ 2. Уравнения первого порядка (продолжение) 305
§ 3. Уравнения второго и высших порядков 310
§ 4. Линейные уравнения 314
§ 5. Системы дифференциальных уравнений 322
§ 6. Вычислительные задачи 325
Глава XV. Тригонометрические ряды 328
§ 1. Тригонометрические многочлены 328
§ 2. Ряды Фурье 329
§ 3. Метод Крылова. Гармонический анализ 333
Глава XVI. Элементы теории поля 335
Ответы 342
О том, как читать книги в форматах pdf, djvu - см. раздел "Программы; архиваторы; форматы pdf, djvu и др."
.
1.
Начальная школа 4.
Решение задач |
||
|
||
|